Mutant isolation of the Escherichia coli quinoprotein glucose dehydrogenase and analysis of crucial residues Asp-730 and His-775 for its function.

نویسندگان

  • M Yamada
  • H Inbe
  • M Tanaka
  • K Sumi
  • K Matsushita
  • O Adachi
چکیده

Several mutants of quinoprotein glucose dehydrogenase (GDH) in Escherichia coli were obtained and characterized. Of these, significant mutants were further characterized by kinetic analysis after purification or by site-directed mutagenesis to introduce different amino acid substitutions. H775R and H775A showed a pronounced reduction of affinity for a prosthetic group, pyrroloquinoline quinone (PQQ), suggesting that His-775 may directly interact with PQQ. D730N and D730A showed low glucose oxidase activity without influence on the affinity for PQQ, Mg2+, or substrate, but D730R showed reduced affinity for PQQ. The spectrum of tryptophan fluorescence revealed that the local structure surrounding PQQ was not changed by D730N mutation. Based on these data, we assume that Asp-730 may occur close to PQQ and function as a proton (and also electron) donor to PQQ or acceptor from PQQH2. Substitutions of Gly-689, that are located at the end of a unique segment of GDH among homologous quinoprotein dehydrogenases, directed reduction of the affinity for PQQ or GDH activity. Therefore, the unique segment and Asp-730 may play a specific role for GDH, which might be related to the intramolecular electron transfer from PQQ to ubiquinone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation

The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...

متن کامل

Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine.

The requirements for substrate binding in the quinoprotein glucose dehydrogenase (GDH) in the membranes of Escherichia coli are described, together with the changes in activity in a site-directed mutant in which His262 has been altered to a tyrosine residue (H262Y-GDH). The differences in catalytic efficiency between substrates are mainly related to differences in their affinity for the enzyme....

متن کامل

Crystallization of quinoprotein glucose dehydrogenase variants and homologues by microseeding

The soluble quinoprotein glucose dehydrogenase oxidizes glucose, maltose and a variety of other monosaccharides and disaccharides to the corresponding lactones. An efficient microseeding protocol is reported to produce crystals of three variants that display reduced activity towards maltose. Similar cross-seeding protocols to grow crystals of homologues from Escherichia coli and Streptomyces co...

متن کامل

Cloning and characterization of the gene encoding pyrroloquinoline quinone-dependent poly(vinyl alcohol) dehydrogenase of Pseudomonas sp. strain VM15C.

A gene library of poly(vinyl alcohol) (PVA)-degrading Pseudomonas sp. strain VM15C was constructed in Escherichia coli with the vector pUC18. Screening of this library with a chromogenic PVA dehydrogenase assay resulted in the isolation of a clone that carries the gene (pdh) for the PVA dehydrogenase, and the entire nucleotide sequence of its structural gene was determined. The gene encodes a p...

متن کامل

Occurrence of a bound ubiquinone and its function in Escherichia coli membrane-bound quinoprotein glucose dehydrogenase.

The membrane-bound pyrroloquinoline quinone (PQQ)-containing quinoprotein glucose dehydrogenase (mGDH) in Escherichia coli functions by catalyzing glucose oxidation in the periplasm and by transferring electrons directly to ubiquinone (UQ) in the respiratory chain. To clarify the intramolecular electron transfer of mGDH, quantitation and identification of UQ were performed, indicating that puri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 34  شماره 

صفحات  -

تاریخ انتشار 1998